Toxicity Effects of SiO2 Nanoparticles on Green Micro-Algae Dunaliella Salina

Authors

  • F. Shariati Department of Environment, Faculty of Natural Resources, Lahijan Branch, Islamic Azad University, Lahijan, Iran, P.O.Box 1616
  • Z. Ramezanpour International Sturgeon Research Institute, P.O.Box: 41635-3464, Rasht, Iran
Abstract:

New extension of nanoparticles used in the last two decades and hence, entrance of them to industrialand non-industrial sewage necessitate study of probable effects of these materials in aquatic ecosystems.This research was performed in order to determine the toxicity effect of silica dioxide (SiO2) nanoparticles on Dunaliella salina green algae in laboratory conditions. SiO2 nanoparticle is one of the bestfull-used nano particles which have application in industries like production of ceramics, plastics, glass,cosmetics, medicine and paper. Dunaliella algae because of having economic value and differentbiochemical composition is used as complements with natural origin in food and pharmacologyindustries. For toxicity determination of this material, the experiment was performed according toO.E.C.D standard method. Experiments on Dunaliella were performed for 72 hours with 7 treatments,two controls and three replicates in each treatment and daily counting of cells in each tube. Countingcell algae population was done by microscope on a Thoma counting slide. For data analysis, probitanalysis, Excel software and SPSS21 were used. The 72 hours NOEC, EC90, EC50 and EC10 werecalculated. The amounts of 72 hours are EC10 =5.37.10-5 , EC50 = 0.169 , EC90 = 512.86, NOEC =1.6×10-2 mg/l. Cell compression noticeably decreased (P < 0.05) by increasing nanoparticleconcentration and silica oxide nanoparticle caused to inhibit growth in Dunaliella species.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of SiO2 Nanoparticles on Chlorophyll, Carotenoid and Growth of Green Micro-Algae Dunaliella salina

As a rapidly-evolving global technology, nanotechnology has presumably brought drastic changes to our lives in the past two decades using engineered nanoparticles, whose penetration into industrial and non-industrial wastewater requires examination of their probable effects in aquatic ecosystems. The main objective of this work is to study the toxicological and biological effects of nanomateria...

full text

Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina

BACKGROUND Recent years have witnessed a rising trend in exploring microalgae for valuable carotenoid products as the demand for lutein and many other carotenoids in global markets has increased significantly. In green microalgae lutein is a major carotenoid protecting cellular components from damage incurred by reactive oxygen species under stress conditions. In this study, we investigated the...

full text

Production of Antioxidant by the Green Alga Dunaliella salina

The variation of the lipophilic (carotenoids and α-tocopherol) and hydrophilic (glutathione and ascorbic acid) antioxidant contents, and the activities of antioxidant enzyme such superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as cellular malonaldehyde and stable radicals of D. salina in response to ultraviolet B (UV-B radiation 290-320 nm) and secondary carotenoid indu...

full text

toxic effect ofaluminum oxidenanoparticles on greenmicro-algae dunaliella salina

aluminum oxide nanoparticles are the most widely used nanoparticles in various industries.theincreasing use of nanoparticles in the past two decades and their entry into the industrial and non-industrialwaste water necessitates the assessment of potential effects of these substances in aquatic ecosystems. oecdstandard method was applied to determine the toxicity of this substance. after perform...

full text

Potential of new isolates of Dunaliella salina

The halotolerant microalga Dunaliella salina has been widely studied for natural 10 β-carotene production. This work shows biochemical characterization of three newly isolated 11 Dunaliella salina strains DF15, DF17 and DF40 compared with D. salina CCAP 19/30 (confirmed to 12 be D. tertiolecta) and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains 13 have been gene...

full text

Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmel...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 4

pages  269- 275

publication date 2016-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023